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ABSTRACT

Modern fluvial systems are highly variable, often containing the entire 

spectrum of fluvial styles (e.g., braided to meandering). This variability is difficult 

to capture in ancient fluvial deposits due to limited 1- and 2-dimesional 

exposures, which provide only a snapshot of the depositional history at one 

location. As a result, researchers are forced to interpolate between exposures 

and develop regional scale models that often underestimate the complexity and 

variability seen in modern environments. Outcrops of the Upper Jurassic Salt 

Wash Member of the Morrison Formation in east-central Utah, USA provide a 

relatively unique opportunity to examine ancient fluvial sandstone bodies in 

planview. However, capturing the 3-dimensional nature of these outcrops is 

problematic in that field-based observations are too specific to delineate larger-

scale trends, and existing aerial imagery does not have the resolution to 

distinguish important details. This thesis outlines the workflow and results of a 

study that utilizes unmanned aerial vehicles (UAV) and structure-from-motion 

(SfM) photogrammetry to produce sub-meter-scale outcrop reconstructions in 3-

D. Overall, average values of sandstone body characteristics (width, orientation, 

paleocurrent, etc.) in the Salt Wash Member are consistent with existing models. 

However, within this spectrum are four distinct types of fluvial deposits, each with 

its own characteristics. Very narrow sandstone bodies (4-6 m wide) occur in 
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groups, are less than 2 m thick and heavily bioturbated. Narrow sandstone 

bodies (15 to 45 m wide) are straight to sinuous, contain evidence of lateral 

migration, and were deposited by east-northeast flowing fluvial systems. Medium 

sandstone bodies (75 to 105 m wide) are straight, and were deposited by non-

migrating, east-flowing fluvial systems. Sheet/other sandstone bodies consist of 

both sheet-like sandstones whose edges are not visible and eroded sandstones 

bodies that cannot be reconstructed. The succession is consistent with a 

distributive fluvial system model (DFS) previously proposed for the Salt Wash 

Member. However, the variability of sandstone bodies and orientations in this 

area suggest these deposits may be more variable at local scales (e.g. 10km2) 

than what would be predicted by existing DFS models. 
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CHAPTER 1

INTRODUCTION 

Fluvial deposits serve as petroleum reservoirs, groundwater aquifers, and 

contain important information on ancient paleogeographies (Miall, 1985, 2006; 

Martinius and Naess, 2005; Bridge, 2006; Ethridge, 2010; Colombera et al., 

2012). These units present serious challenges owing to the complex nature of 

fluvial systems and their deposits (e.g., Miall, 1996). Studies of modern fluvial 

systems have been instrumental in gaining insights into these deposits (e.g., 

Bristow, 1987; Best et al., 2003; Bridge, 2006; Rust et al., 2011), but questions 

remain concerning the preservation of deposits in the rock record and how well 

modern fluvial deposits serve as analogs for ancient fluvial deposits (Miall, 2006). 

As a result, outcrop analogues have long been a critical source of information on 

the architecture and spatial variability of preserved fluvial systems because they 

themselves are representative of preserved deposits (Miall, 2006). 

Outcrops of sedimentary rocks have long served as the principal source of 

information for studying fluvial deposits. Such exposures are three-dimensional in 

nature and contain important information across small (millimeters to meter), 

intermediate (meter to kilometer), and large (kilometer to 10s kms) scales. Over 

the years, a variety of methods have evolved to extract data from outcrops (e.g., 

Buckley et al., 2008; Miall, 1985). Large-scale features have been successfully 
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captured with aerial photos and satellite imagery (e.g., Hartley et al., 2010; 

Hubbard et al., 2010; Weissmann et al., 2010), whereas small- to intermediate-

scale outcrop features have been recorded with terrestrial laser scanning (TLS), 

differential GPS, and similar technologies (Bellian et al., 2005; Buckley et al., 

2008, 2010; Hajek et al., 2010; Hodgetts, 2013; Rarity et al., 2013; Rittersbacher 

et al., 2013; Pemberton et al., 2016). Intermediate-scale features, however, are 

often difficult to characterize as these features are below the resolution of 

satellite imagery and aerial photos, but larger and more complex than what can 

be easily recorded with field-based methods. Existing options such as TLS can 

be helpful for studying small- and intermediate-scale components of outcrops, 

but may not be appropriate for all investigators as these techniques can involve 

significant capital costs, training, and specialized equipment. What is needed is 

an easy-to-use and low-cost technique that will assist in the measurement and 

interpretation of small- to intermediate-scale features in sedimentary rock 

exposures.  

In addition, ancient fluvial deposits can be extremely complicated due to 

their inherent three-dimensional nature (variable widths and thicknesses, 

orientation, degree of amalgamation, etc.). The vast majority of the data and 

depositional models from ancient fluvial strata are derived from vertical 

successions or photomosaics, which are exposed either in outcrops or from 

subsurface data like well-logs and cores (Miall, 1985; Ethridge, 2010). While this 

data is important to better understand ancient fluvial systems, it falls short of 

describing variations that can exist within larger systems in- and out-of the 
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outcrop plan (plan-view). This presents a major limitation in recording the spatial 

variation across ancient fluvial systems. 

Plan-view exposures of ancient fluvial deposits are rare, but where 

present, have been used to provide insights into depositional histories (e.g., Foix 

et al., 2012; Ielpi and Ghinassi, 2014; Hartley et al., 2015). However, with few 

exceptions (e.g., Cuevas martínez et al., 2010), the majority of these examples 

are limited to individual meander bar deposits or fluvial stories and 

reconstructions focus on paleohydraulic conditions. Significant questions remain 

as to how preserved sandstone bodies cross-cut and vary in plan-view space 

over larger areas (e.g., > 1 km2) and between fluvial stories.  

Here we use unmanned aerial vehicles (UAV), Structure-from-Motion 

photogrammetry (SfM), and field observations to describe and interpret plan-view 

exposures of fluvial sandstone bodies in the Salt Wash Member of the Morrison 

Formation in east-central Utah. Mudstones in this region have been eroded, 

leaving a 3-D framework of ~flat-lying sandstone bodies, which provide a 

relatively unique setting to examine plan-view aspects of the deposits. 

 The aim of this research is to develop and test a workflow that integrates 

UAV and SfM photogrammetry to develop high-resolution two- and three-

dimensional (2-D and 3-D) models and augment them with field-based 

measurements to aid in sedimentary research. Then to utilize these models to 

better understand the lateral and vertical variability inherent in ancient fluvial 

deposits. The objectives of this thesis are:  
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1. Test and apply a UAV-SfM workflow to fluvial sandstone bodies 

exposed in plan-view. 

2. Test the recently proposed Salt Wash Distributive Fluvial Systems 

model at an intermediate scale. 

3. Reconstruct the planview architecture, and assess variability and 

trends.   

This thesis contains 5 chapters and appendices for the two major chapters 

(chapters 3 and 4). Within Chapter 2 a literature review is conducted where 

previous work and background information is given about SfM photogrammetry, 

UAVs, and a geologic background of the Morrison Formation, the Salt Wash 

Member from the Morrison Formation, and the Salt Wash as a distributive fluvial 

system (DFS). Chapter 3 introduces a UAV-SfM workflow and tests its 

applicability to an outcrop exposed in plan-view. Within this chapter the integrity 

of the UAV-SfM derived models is assessed by comparing results processed with 

and without ground control points (GCP). The workflow is then demonstrated on 

a small barform exposed in plan-view from the Salt Wash Member. Chapter 4 

applies the UAV-SfM workflow developed in Chapter 3 to capture roughly 10 km2 

of fluvial sandstone bodies from the Salt Wash Member. The UAV-SfM derived 

models are augmented with field-based measurements and used to describe the 

lateral and vertical variability in channel styles, geometry, orientations, and 

paleocurrents. These results and used to compare them with the current 

depositional model for the Salt Wash Member and assign an appropriate modern 
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analog. Chapter 5, the final chapter, is a brief conclusion and summation of the 

findings found within this thesis. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1. Structure-from-motion photogrammetry and unmanned aerial 

vehicles 

SfM involves the use of multiple overlapping images and an image-based 

terrain extraction algorithm to reconstruct the location of individual points in the 

photographs in 3-D space (Snavely et al., 2008). Traditional photogrammetry 

uses overlapping images to determine the location of points within a scene, but 

prior knowledge of both exterior (the camera location in 3-D space) and interior 

(geometry and optics of the camera) orientation parameters of the camera is 

required. With SfM, the images themselves are used to solve the exterior and 

interior orientation parameters of the cameras without the need to specify a 

network of targets with known 3-D positions (Snavely et al., 2006; Westoby et al., 

2012). This process is performed by automatically identifying keypoints in each 

image, matching them between overlapping images, and then using an iterative 

bundle adjustment procedure to recover the camera parameters (Snavely et al., 

2008). Once camera parameters are recovered, multi-view-stereo algorithms use 

the images as inputs and produce 3-D models (e.g. point clouds) with accuracy 

approaching that of terrestrial laser scanners (TLS) (James and Robson, 2012; 

Westoby et al., 2012). 
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SfM, has been applied in several earth science disciplines, including 

geomorphology, structural geology, and coastal processes (e.g., Westoby et al. 

2012; James and Robson, 2012; Fonstad et al. 2013; Javernick et al. 2014; 

Micheletti et al. 2014; Bistacchi et al. 2015), but has yet to be fully applied to the 

sedimentary geosciences. Similarly, UAVs have become increasingly important 

tools in many aspects of the geosciences (Niethammer et al. 2012; Mancini et al. 

2013; Bemis et al. 2014; Colomina and Molina 2014; Dietrich 2014; Nex and 

Remondino 2014; Siebert and Teizer 2014; Gonçalves and Henriques 2015; 

Ryan et al. 2015; Long et al. 2016). Integrating the mobility of UAVs with the 3-D 

reconstruction capabilities of SfM provides an alternative way to gather outcrop 

data, particularly in the small- to intermediate-scale range (e.g., James and 

Robson, 2012) 

Numerous studies have examined the accuracy of SfM reconstructions 

and products in detail (e.g., Favalli et al. 2012; Turner et al. 2014; James and 

Robson 2014; Wilkinson et al. 2016). Comparing TLS and SfM has yielded a 

number of advantages and disadvantages for both methods. TLS has been found 

to be more robust and obtain higher precision than that of SfM, however, the 

latter has been shown to be an effective substitute. Westoby et al. (2012) found 

that decimeter-scale accuracy can still be achieved with SfM and other studies 

have had similar findings (e.g. Favalli et al. 2012; Wilkinson et al. 2016). What 

SfM lacks in precision it makes up for in being a low-cost, user-friendly, and 

portable alternative.  
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Work has also been done on utilizing UAVs to acquire imagery for SfM 

photogrammetry. A study by Turner et al. (2012) used a UAV with a navigation 

grade GPS and achieved an absolute spatial accuracy of 65-120 cm. Turner et 

al. (2014) later demonstrated that using a UAV with a differential GPS (dGPS) 

achieved an absolute spatial accuracy of 0.11 m, eliminating the need for GCPs. 

James and Robson (2014) found that systematic errors can exist from models 

derived from UAVs, known as vertical ‘doming’, but these can be largely 

mitigated by incorporating oblique imagery into the image network. 

UAVs come in two main types: fixed-wing and multi-rotor (Fig. 3.2). Fixed-

wing UAVs typically have a longer flight time (>30 mins) and are ideal for 

acquiring high-resolution orthophotos over large areas. Multi-rotor UAVs have a 

shorter flight duration, but have the advantage of vertical take-off and landing, 

and the ability to acquire oblique and panoramic imagery. Siebert and Teizer 

(2014), outlined helpful questions to answer when selecting an appropriate UAV 

system including: What is the size of the area to be studied? At what altitude 

does the UAV need to operate? What camera system and what camera mount 

system (e.g., gimbal) are needed? Are other physical obstacles present? And 

what take-off/landing space is available? In general, multi-rotor UAVs tend to be 

better suited for multi-faceted and vertical outcrop exposures with limited take-off 

and landing areas. Fixed-wing UAVs tend to be better suited for large areas 

where sedimentary units are exposed on near-horizontal planes. Eisenbeiss 

(2009) provides a detailed review of UAVs and their use as a photogrammetric 

measurement tool. 
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2.2. Morrison Formation 

The Morrison Formation consists of fluvial sandstones and nonmarine 

mudstones, with localized lacustrine and eolian deposits (Craig et al., 1955; 

Mullens and Freeman, 1957; Tyler and Ethridge, 1983; Currie, 1997; Robinson 

and McCabe, 1997; Turner and Peterson, 2004; Kjemperud et al., 2008; 

Weissmann et al., 2013). In most locations it is composed of three members: the 

lowermost Tidwell Member, the Salt Wash Member, and the uppermost Brushy 

Basin Member. The Morrison Formation was deposited in the western interior of 

the United States during the Late Jurassic (Turner and Peterson, 2004). 

Sediment for the unit is thought to have been supplied by the Sevier Highlands to 

the west and the Mogollon Highlands to south of the region (Turner and 

Peterson, 2004). The Morrison Formation does not thicken continuously to the 

west, as is typical of foreland basin deposits, leading some to propose 

subsidence in the area was not influenced by flexural loading (Heller et al., 

1986). However, others have proposed that the Morrison Formation was 

deposited in the back-bulge depozone of a flexural foreland basin system that 

resulted from a Late Jurassic phase of the Sevier orogeny (DeCelles and Currie, 

1996; Currie, 1997).   

2.2.1 Salt Wash Member 

The Salt Wash Member of the Morrison Formation is roughly middle 

Kimmerdgian in age (Turner and Peterson, 2004) and extends across central 

Utah, west-central Colorado, northeast Arizona, and northwest New Mexico 

(Craig et al. 1955; Mullens and Freeman, 1957). The regional extent of the unit 
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indicates it was associated with a fan-shaped fluvial system that prograded 

roughly north-eastward (Craig et al., 1955; Mullens and Freeman, 1957; 

Peterson, 1980, 1984; Tyler and Ethridge, 1983; Kjemperud et al., 2008; 

Weissmann et al., 2013) from a paleotopographical outlet located near the 

Mogollon-Sevier highlands syntaxis (Craig et al., 1955; Dickinson and Gehrels, 

2008; Owen et al., 2015a). Climate during the time of deposition was likely semi-

arid and characterized by variable or seasonal precipitation (Demko et al., 2004; 

Parrish et al., 2004; Turner and Peterson, 2004; Myers et al., 2014). 

The deposits are characterized by multi-story and laterally-amalgamated 

fluvial sandstones and lesser nonmarine mudstones and siltstsones (e.g., Tyler 

and Ethridge, 1983). Facies within the Salt Wash Member have been studied 

extensively, but typically contain very fine-grained sandstones to pebble 

conglomerates with trough and planar cross-stratification, plane beds, and 

assymetric ripples, which are interpreted as braided and meandering fluvial 

deposits (e.g. Peterson, 1980, 1984; Tyler and Ethridge, 1983; Robinson and 

McCabe, 1997; Kjemperud et al., 2008; Weissmann et al., 2013; Owen, et al., 

2015b, 2015c). Pebbles of the Salt Wash Member are typically composed of 

sand intraclasts, quartz grains, and chert clasts (Robinson and McCabe, 1997; 

Owen et al., 2015c). Isolated to continuous, red-green, mottled mudstones are 

present in some areas of the deposit and are interpreted as paleosols and 

floodplain deposits (Demko et al., 2004). Thin to medium sandstone beds within 

mudstone packages are interpreted as crevasse splay, minor channel, and 

overbank deposits (Robinson and McCabe, 1998; Kjemperud et al., 2008; Owen 
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et al., 2015b, 2015c). Terrestrial bioturbation is present throughout the formation, 

particularly on the upper portions of fluvial sandstone packages and crevasse 

splay deposits (e.g., Hasiotis, 2004).   

2.2.2. Salt Wash DFS model 

The Salt Wash Member is arguably the best example of an ancient DFS, 

or fluvial megafan (Tyler and Ethridge, 1983; Weissmann et al., 2010; Owen et 

al., 2015c). Such features are increasingly recognized as important components 

of clastic depositional systems in basins (Hartley et al., 2010; Weissmann et al., 

2010, 2013), but sedimentary details from these deposits are scarce. A modern 

DFS is defined by: 1) channels that radiate from an apex; 2) a decrease in 

channel size and abundance downstream; 3) an increase in preservation of 

floodplain deposits relative to channel deposits downstream; 4) a decrease in 

grain size downstream; and 5) a change from amalgamated channel deposits in 

proximal areas to smaller fixed channels in distal areas (Horton and Decelles, 

2001; Nichols and Fisher, 2007; Hartley et al., 2010; Weissmann et al., 2010).   

The nature of the fluvial sandstone bodies, grain size, and facies change 

across the region from the southwest to the northeast (Craig et al., 1955; Mullens 

and Freeman, 1957). In the southwest the unit is dominated by thick, laterally 

extensive amalgamated channel fill with high connectiveity (Robinson and 

McCabe, 1997; Kjemperud et al., 2008; Owen et al., 2015c). The grian size is 

dominantly coarse with very little evidence of floodplain deposits. As you move 

northeast there is a decrease in thickness and channel belt complexes and are 

separated by packages of floodplian material (Owen et al., 2015c). The farthest 
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extent of the Salt Wash Member is dominanted by floodplain material with sparse 

ribbon channels and an absence of channel belt deposits (Owen et al., 2015c). 

These regional trends have lead to the conclusion that the Salt Wash Member, 

along with the underlying Tidwell Member, are part of an ancient Distributive 

Fluvial System (DFS), referred to as the Salt Wash DFS (Craig et al., 1955; Tyler 

and Ethridge, 1983; Weissmann et al., 2013; Owen et al., 2015c)
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CHAPTER 3 

USING UNMANNED AERIAL VEHICLES AND STRUCTURE-FROM-MOTION 

PHOTOGRAMMETRY TO CHARACTERIZE SEDIMENTARY OUTCROPS: AN 

EXAMPLE FROM THE MORRISON FORMATION, UTAH, USA1 

1Chesley, J. T., Leier, A.L. White, S., Torres, R., 2017. Submitted to 
Sedimentary Geology, 1/24/2017. 



www.manaraa.com

 

14 

3.1 Abstract 

Recently developed data collection techniques allow for improved 

characterization of sedimentary outcrops. Here, we outline a workflow that 

utilizes unmanned aerial vehicles (UAV) and structure-from-motion (SfM) 

photogrammetry to produce sub-meter-scale outcrop reconstructions in 3-D. SfM 

photogrammetry uses multiple overlapping images and an image-based terrain 

extraction algorithm to reconstruct the location of individual points from the 

photographs in 3-D space. The results of this technique can be used to construct 

point-clouds, orthomosaics, and digital surface models (DSMs) that can be 

imported into GIS and related software for further study. The accuracy of the 

reconstructed outcrops, with respect to an absolute framework, is improved with 

geotagged images or independently gathered ground control points, and the 

internal accuracy of 3-D reconstructions is sufficient for sub-meter scale 

measurements. We demonstrate this approach with a case study from central 

Utah, where UAV-SfM data help delineate complex features within Jurassic 

fluvial sandstones. 
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3.2 Introduction 

Outcrops of sedimentary rocks have long served as the principal source of 

information for sedimentary and stratigraphic studies. Such exposures are three-

dimensional in nature and contain important information across small (millimeters 

to meter), intermediate (meter to kilometer), and large (kilometer to 10s kms) 

scales. Over the years, a variety of methods have evolved to extract data from 

outcrops (e.g., Buckley et al., 2008; Miall, 1985). Large-scale features have been 

successfully captured with aerial photos and satellite imagery (e.g., Hartley et al., 

2010; Hubbard et al., 2010; Weissmann et al., 2010), whereas small- to 

intermediate-scale outcrop features have been recorded with terrestrial laser 

scanning (TLS), differential GPS, and similar technologies (Bellian et al., 2005; 

Buckley et al., 2008, 2010; Hajek et al., 2010; Hodgetts, 2013; Rarity et al., 2013; 

Rittersbacher et al., 2013; Pemberton et al., 2016). Intermediate-scale features, 

however, are often difficult to characterize as these features are below the 

resolution of satellite imagery and aerial photos, but larger and more complex 

than what can be easily recorded with field-based methods. Existing options such 

as TLS can be helpful for studying small- and intermediate-scale components of 

outcrops, but may not be appropriate for all investigators as these techniques 

can involve significant capital costs, training, and specialized equipment. What is 

needed is an easy-to-use and low-cost technique that will assist in the 

measurement and interpretation of small- to intermediate-scale features in 

sedimentary rock exposures.  
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Here, we explain how the combination of camera-mounted unmanned 

aerial vehicles (UAVs) and structure-from-motion (SfM) photogrammetry can be 

applied to sedimentary outcrop studies. SfM, which uses digital photos to create 

3-D reconstructions, has been applied in several earth science disciplines (e.g., 

James and Robson, 2012; Westoby et al., 2012; Fonstad et al., 2013; Javernick 

et al., 2014; Micheletti et al., 2014; Bistacchi et al., 2015), but has yet to be fully 

utilized in sedimentary studies. Similarly, UAVs are becoming increasingly 

effective tools in the geosciences (Niethammer et al., 2012; Mancini et al., 2013; 

Bemis et al., 2014; Colomina and Molina, 2014; Dietrich, 2014; Nex and 

Remondino, 2014; Siebert and Teizer, 2014; Gonçalves and Henriques, 2015; 

Ryan et al., 2015; Long et al., 2016). Integrating the mobility of UAVs with the 3-

D reconstruction capabilities of SfM provides an alternative way to gather outcrop 

data, particularly in the small- to intermediate-scale range (e.g., James and 

Robson, 2012). SfM and UAVs will not replace existing data collection 

techniques, but their use offers a relatively easy and effective way to augment 

traditional methods. This paper includes a brief overview of SfM and UAVs, as 

well as a case study demonstrating their applicability to outcrop-based 

investigations.  

3.3 Structure-from-Motion Photogrammetry 

SfM involves the use of multiple overlapping images and an image-based 

terrain extraction algorithm to reconstruct the location of individual points in the 

overlapping images in 3-D space (Fig. 3.1; Snavely et al., 2008). Traditional 

photogrammetry uses overlapping images to determine the location of points 
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within a scene, but prior knowledge of the cameras exterior (location in 3-D 

space) and interior (geometry and optics) orientation parameters is required. 

With SfM, the images themselves are used to solve the exterior and interior 

orientation parameters of the cameras without the need to specify a network of 

targets with known 3-D positions (Snavely et al., 2006; Westoby et al., 2012). 

This process is performed by automatically identifying keypoints in each image, 

matching them between overlapping images, and then using an iterative bundle 

adjustment procedure to recover the camera parameters (Snavely et al., 2008). 

Once camera parameters are recovered, multi-view-stereo algorithms use the 

images as inputs and produce 2- and 3-D models (e.g. orthomosaic and point 

clouds) with accuracy approaching TLS (James and Robson, 2012; Westoby et 

al., 2012).  

3.4. UAVs and Data Acquisition 

3.4.1. Unmanned Aerial Vehicles 

The digital photos used in SfM can be acquired from different platforms, 

including hand-held cameras, balloons, kites, and UAVs. UAVs are particularly 

effective for collecting digital images of sedimentary outcrops on intermediate-

scales (m to km), and in areas that are not easily accessible. UAVs come in two 

main types: fixed-wing and multi-rotor (Fig. 3.2). Fixed-wing UAVs typically have 

a longer flight time (>30 mins) and are ideal for acquiring high-resolution 

orthophotos over large areas. Multi-rotor UAVs have a shorter flight duration, but 

have the advantage of vertical take-off and landing, and the ability to acquire 

oblique and panoramic imagery. Siebert and Teizer (2014) outlined helpful 
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questions to answer when selecting an appropriate UAV system including: What 

is the size of the area to be studied? At what altitude does the UAV need to 

operate? What camera system and what camera mount system (e.g., gimbal) are 

needed? Are other physical obstacles present? And what take-off/landing space 

is available? In general, multi-rotor UAVs tend to be better suited for multi-

faceted and vertical outcrop exposures with limited take-off and landing areas. 

Fixed-wing UAVs tend to be better suited for large areas where sedimentary 

units are exposed on near-horizontal planes. Eisenbeiss (2009), provides a 

detailed review of UAVs and their use as a photogrammetric measurement tool. 

3.4.2. Image acquisition strategies 

Digital photographs are the basic input for SfM reconstructions; thus, 

digital cameras are the principal data-gathering tools. As with any 

photogrammetric technique, the quality of the input images constrains the output 

quality of the model. Cameras with as little as 5 MP have produced successful 

results (Micheletti et al., 2014). A digital SLR camera equipped with a fixed focus 

lens will generate the most accurate data, whereas widely varying zoom settings 

introduce instability (Shortis et al., 2006). Geotagging the images during 

acquisition can increase the accuracy and the processing time. Turner et al. 

(2014) demonstrated that an absolute spatial accuracy of <1 m could be 

achieved with geotagged images. Cameras without geotagging capabilities can 

still be used but require constraints from ground control points (GCPs) in the 

processing stage. 
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The optimal strategy for acquiring the necessary number of photos and 

degree of overlap is both location- and objective-specific. In our experience, an 

overlap of >60% between adjacent photos is typically sufficient. Areas with less 

contrast (e.g., deserts) may need a higher overlap to produce optimal results. 

The total number of photos needed is a function of the size of the area and the 

amount of overlap between images. As a general rule, key features in the 

reconstruction should be visible in a minimum of three photos in order for the SfM 

algorithm to locate individual points. Fewer photos can result in gaps, holes, or 

distortions in the SfM-models. However, an excessive number of photos can 

result in prolonged processing times and unnecessarily large files that can be 

difficult to manipulate during post-processing. Overall, it is better to take more 

photos than fewer, as SfM processing software typically allows for selective use 

of images.  

3.5. Data processing 

Once the digital images of the outcrop are acquired, they need to be input 

into SfM processing software, which can be used to produce exportable, 

georeferenced point-clouds, triangular meshes, orthomosaics and digital surface 

models (DSMs). SfM processing software comes in both open-source and 

commercial packages. Bundler (Snavely et al., 2006) and VSFM (Wu, 2013) are 

two commonly used, open-source programs that take the input photos and 

produce 3-D point clouds, which can be further processed with additional 

software (e.g., PMVS2; Furukawa and Ponce, 2010). Commercial software 
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packages such as Agisoft PhotoscanTM, and Pix4DmapperTM provide the benefit 

of automated workflows.  

Data processing can vary between software packages, but the SfM 

workflow typically contains the following steps: 1) identification of keypoints in 

each image; 2) matching of keypoints between images; 3) automatic aerial 

triangulation (AAT) and bundle block adjustments (BBA) to estimate camera 

pose; 4) processing of the oriented photos to obtain a point cloud; and 5) DSM 

and orthomosaic generation (Fig. 3.3). During the initial processing images are 

uploaded and a matching algorithm (e.g., SIFT) is used to identify 

correspondences between images (Lowe, 1999, 2004). AAT uses the 

correspondences to triangulate the 3-D positions of the points; BBA is then used 

to reconstruct the position and orientation of the camera for every acquired 

image (Tang et al., 1997; Triggs et al., 2000). Each computed 3-D point, which 

was initially detected using AAT is associated with a corresponding 2-D keypoint 

on the images. Keypoints are then verified and their 3-D coordinates are 

calculated (tie-points), producing a sparse 3-D point cloud. Multi-view stereo 

algorithms use the tie-points and estimated camera parameters as inputs for SfM 

models, generating the densified point cloud, DSM, and orthomosaic.  

3.6. SfM Accuracy 

Numerous studies have examined the accuracy of SfM reconstructions in 

detail (e.g., (Favalli et al., 2012; James and Robson, 2012, 2014; Westoby et al., 

2012; Micheletti et al., 2014; Turner et al., 2014; Wilkinson et al., 2016). For 

outcrop studies, we are primarily interested in two types of accuracy: absolute 
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and relative. Absolute accuracy refers to the difference between the location of a 

point on Earth (e.g., latitude, longitude, and elevation) and the reconstructed 

position of the same point in the SfM output. Relative accuracy is a measure of 

positional consistency between a data point relative to nearby data points; it 

reflects the similarity of the measured distances between points on Earth, and 

the corresponding distances in the SfM output. For sedimentary outcrop studies, 

relative accuracy is arguably more important; a high degree of relative accuracy 

means that SfM reconstructions can be used to acquire quantitative 

measurements (e.g., lengths and angles) of outcrop features. Whether these 

features are accurately located in absolute space is typically less important.  

Prior to applying the UAV and SfM technique to outcrops, we tested both 

the absolute and relative accuracy of our reconstructions on open fields near 

Columbia, South Carolina, USA (Appendix A). In absolute space, the UAV-SfM 

technique had an average horizontal and vertical offset of 1-3 m, as measured by 

comparing SfM reconstructions done with GCPs and without GCPs. The relative 

accuracy was assessed by comparing measurements of objects in the SfM 

reconstructions with ground-based measurements of those same features. A 

one-way variance test between these measurements yielded no statistically 

significant differences, indicating a very high degree of relative accuracy within 

the SfM reconstructions. The combination of previous studies and our test results 

provides confidence that the UAV-SfM technique is suitable for examining 

outcrop features at intermediate scales (meters – kilometers). Nonetheless, we 
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recommend that all investigators test accuracies with control measurements 

before undertaking outcrop studies.  

3.7. Case Study 

To demonstrate the applicability of the UAV-SfM technique to sedimentary 

outcrops, we examined exposures of the Salt Wash Member of the Morrison 

Formation in east-central Utah (Fig. 3.4). The Salt Wash Member is composed of 

multistory and multilateral fluvial sandstone bodies interbedded with floodplain 

mudstones and siltstones (e.g., Tyler and Ethridge, 1983). South of Green River, 

Utah, USA, the less resistant mudstones in the Salt Wash Member have been 

eroded, leaving a 3-D framework of ~flat-lying sandstone bodies (Jones and 

Gustason, 2006), which provide a perfect natural laboratory to examine vertical 

and plan-view exposures of ancient fluvial deposits. Large-scale features in the 

area are identifiable in satellite imagery (e.g., Google EarthTM), and small-scale 

features (grain-size, sedimentary structures) can be recorded with field-based 

observations. However, the intermediate-scale features, which include the 

internal details of sandstone bodies, and those features that help tie the field-

based observations to the large-scale exposures, are impossible to document 

without an additional dataset (Fig. 3.4B). To bridge this data gap and aid in our 

interpretation, we employed the UAV-SfM technique to capture and map the 

intermediate-scale features of a portion of this area (Fig. 3.5).  

Images were collected using an autonomous, fixed-wing, UAV (eBeeTM, 

Sensefly Ltd.) that carried an 18.2 MP digital camera (Sony) with a 25 mm focal 

length lens (Fig. 3.2B). The UAV is equipped with an on-board artificial 
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intelligence system that analyzes data from an inertial measurement unit and an 

on-board GPS to optimize the flight. The flight was planned and operated using 

eMotion2TM software. Flights were made at an altitude of 92 m (302 feet) above 

the local ground surface and images were acquired with a lateral and longitudinal 

overlap of 80%. In total, 516 images were acquired, covering an area of 0.87 

km2, and requiring a flight time of approximately 30 minutes (Fig. 3.5A). Field-

based observations and paleocurrent measurements (n = 152) were collected in 

the field to supplement the models with qualitative and quantitative information. 

The images were processed using Pix4DmapperTM (Pix4D) photogrammetry-

software, which groups the workflow into three steps: 1) initial processing; 2) 

point cloud densification and 3-D mesh generation (Fig. 3.5B); and 3) DSM and 

orthomosaic generation (Fig. 3.5C-D). The densified point-cloud contains 

62.8x106 points, with an average density of 117.92 points/m2. The orthomosaic 

and DSM resulted in a resolution of 2.69 cm/pixel. A series of control 

measurements made on the ground were identical to the same measurements 

made in the SfM reconstruction, indicating high relative accuracy. The entire 

process, including flight time and data processing, took approximately 5 hours. 

The resulting orthomosaic and DSM were imported into ArcMap (10.3), where 

individual features were mapped and augmented with field-based observations. 

The UAV-SfM produced orthomosaics and DSM provide a high-resolution 

image of the field area and highlight several features that could not be observed 

from the ground or with existing aerial imagery (Fig. 3.6). The northern margin of 

the sandstone body is convex to the north, whereas the southern boundary of the 
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exposure is a cliff face. The north-south width of the sandstone body varies from 

56 m in the west, 115 m in the center, and 65 m in the east. Internally, several 

distinct architectural elements are identifiable and mappable in the orthomosaic 

and DSM (Figs. 3.7, 3.8). The majority of the surfaces within the sandstone body 

are convex-northward, similar in trend to the northern boundary, with the 

exception of one unit in the west-central area, which trends to the northwest-

southeast (Fig. 3.7). A series of west-east and northwest-southeast trending 

curvilinear sandstone bodies and surfaces are present in the east-central area, 

which based on their orientation and related paleocurrent data are interpreted as 

lateral accretion sets (Fig. 3.7). The northernmost periphery of the sandstone 

body contains a traceable architectural element ~17 m in width and 390 m in 

length (Figs. 3.7, 3.8).    

The resolution and 3-D nature of the orthomosaic, DSM, and point-cloud 

enable additional quantitative measurements to be made with this dataset. 

Widths and lengths of individual features are easy to measure with SfM data. 

Based on our experience, the SfM measurements are more accurate than those 

made on the outcrop given the uneven terrain and obstacles (e.g., bushes), and 

can be made in a fraction of the time (Fig. 3.8). The high resolution of the 

orthomosaic and DSM enable paleocurrent data to be estimated from meso- to 

macro-scale sedimentary structures (Fig. 3.8), which can augment ground-based 

measurements and be used to collect data from inaccessible locations. In 

addition to 2-D measurements, volumes of features and sandstone bodies can 

be calculated directly from the point cloud; for example, the sandstone exposure 
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in Figure 3.9 has a volume of 168.77 ±6.09 m3. In addition, the geolocated point 

cloud can be imported into more comprehensive modeling software, where it can 

provide a 3-D framework for more detailed characterization (e.g., Enge et al., 

2007). 

Based on the overall morphology, sedimentary characteristics, and 

paleocurrent data, we interpret this sandstone body as the deposit of an 

internally complex, laterally-accreting barform. The orientation of the accretion 

sets in the eastern portion of the sandstone suggest both lateral- and down-

stream migration with respect to the dominant paleoflow direction (Fig. 3.8). The 

preserved morphology of the sandstone body is suggestive of a point-bar in a 

meandering river system, but without the complete exposure (the southern 

margin is eroded) there is a possibility this sandstone was deposited by a 

laterally accreting bar in a multichannel system (i.e., braided river). Regardless, 

the UAV-SfM data capture a complex array of depositional features that would 

have been difficult if not impossible to determine without this dataset. These 

details can be critical for understanding analogous reservoirs and aquifers.  

Although this particular study focuses on sedimentary strata that are 

exposed in plan-view, this methodology and workflow is just as applicable to 

vertical or inclined outcrop exposures. The general procedures used to acquire, 

process, and interpret data from a vertical outcrop exposure are the same, 

although a multi-rotor UAV or alternative platform may be more appropriate. The 

data from a vertical outcrop face would provide the same basis for correlation, 

measurements, and interpretation as outlined in the case study.  
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3.8. Conclusion 

The combined use of UAVs and SfM photogrammetry provides an 

effective way to acquire additional data from sedimentary outcrop exposures. 

This method is particularly useful for intermediate-scale features and helps 

bridge the gap between existing aerial imagery and ground-based observations. 

In addition, SfM records the 3-D nature of outcrops, making it perfect for 

capturing complicated exposures. The use of UAVs in image acquisition allows 

larger areas to be studied, including exposures that are inaccessible by foot (e.g., 

vertical cliff faces). Although it should be tested prior to use, the 3-D 

reconstructions made from UAV-SfM can achieve a relative accuracy to a sub-

meter scale and can be used to gather quantitative data from outcrop exposures. 

That being said, this method is not without limitations. In terms of quality, TLS 

data yield far higher resolution and show more consistency relative to SfM 

(Wilkinson et al., 2016). The prices of UAVs are decreasing, however such 

devices are not without initial costs and many require operator training before 

use. In addition, UAVs cannot be used everywhere; UAVs are regulated by 

federal and local agencies, which should be consulted prior to their use. Despite 

these drawbacks, the combined use of UAVs and SfM photogrammetry 

represents a promising new tool for characterizing and studying sedimentary 

outcrops.  
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Figure 3.1. Schematic of structure-from-motion (SfM) photogrammetry. SfM 
photogrammetry uses multiple overlapping images and an image-based terrain 
extraction algorithm to reconstruct the location of individual points in 3-D space. 
A) View of an outcrop from above, with cameras. B) Ground-based view of the 
outcrop, including camera locations. 
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Figure 3.2. Examples of different unmanned aerial vehicles (UAVs). A) 
Quadcopters have the advantage of high mobility and are well suited for vertical 
and multifaceted outcrops exposures. B) Fixed-winged UAVs can cover large 
areas and are typically better suited for outcrop faces that are non-vertical. 
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Figure 3.3. A) SfM photogrammetry concept. Green spheres represent camera 
locations, green squares show the digital images. The outcrop of interest is in the 
background. Outcrop edge is shown in each image to assist orientation. Multiple 
overlapping images are taken and a matching algorithm identifies keypoints in 
each image (yellow dots) and corresponding keypoints are matched between 
images. B) The location of those keypoints are triangulated and projected into a 
3-D space (black ray traces) generating tie-points (red dot), creating a sparse 3-
D point-cloud. C) Following this, a densified point-cloud and mesh are generated 
from the sparse-point cloud. D and E) The densified point-cloud and the 
calibrated images are used to obtain elevation information and remove 
perspective distortion to generate the orthomosaic and DSM.  
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Figure 3.4. Case study area. A) The Salt Wash Member of the Morrison 
Formation is exposed south of Green River, Utah. Image is from GoogleEarthTM, 
vertical perspective. Mudstone units have been eroded, leaving a framework of 
relatively flat-lying sandstone bodies exposed at the surface. Although larger-
scale features can be seen in these images, details cannot be delineated. B) 
Photo of the outcrop exposures from ground-view. At this scale, small-scale 
features can be observed and measured, but larger-scale sandbodies, like that in 
(A) are not discernable.  
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Figure 3.5. Data acquisition from the case-study area. A) An oblique perspective 
image of the sparse point cloud created from SfM. For location and scale, see 
Figure 4. Green circles and rectangles above the point cloud represent the 
locations of the photos collected by the UAV as it flew above the study area. 
These images were used to create the sparse point cloud. The same road is 
denoted in each figure to help with orientation. B) Densified point cloud created 
from the sparse point cloud, same perspective as in (A). Inset shows a smaller 
scale subset of the densified point cloud, depicted with a black box. C) Vertical 
perspective of the DSM created from the images and SfM processing. Vertical 
scale is displayed in meters above sea level. Horizontal scale is the same as in 
(D). Orthomosaic of the study area, vertical perspective. 
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Figure 3.6. Comparison between UAV-SfM data and GoogleEarthTM imagery. A) 
Regional (vertical) view of the case-study area from UAV acquired images. Black 
line outlines the northern margin of a sandstone body. B) Same area as in (A) 
from GoogleEarthTM. C) Zoomed-in view of the outcrop from the UAV acquired 
data. D) Zoom in view of the same area in (C) from GoogleEarthTM. Several 
datasets can be used to capture larger-scale features in the outcrop; however, 
intermediate- to small-scale features are below the resolution of most available 
satellite imagery and aerial photos. 
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Figure 3.7. Sandstone body and geologic interpretations from the case study. A) 
Orthomosaic of the sandstone body exposed in the study area. B) Data from the 
sandstone body, derived from both UAV-SfM imagery and ground-based 
observations. Individual elements within the sandstone body were mapped using 
UAV-SfM data and ground based observations. These interpretations were 
combined with paleocurrent data taken at multiple stations. Arrows show the 
average for each station. Orientations of surfaces and sandstones are also 
shown. C) DSM of the same area. In the white box are a series of north-dipping 
surfaces interpreted as from a laterally accreting barform. D) Ground-based view 
of the white box in (C), looking towards the east. Paleocurrents record easterly 
flow, while the accretion sets dip to the north. These features are subtle at 
ground level, but could be easily identified using ground-based observations and 
the UAV-SfM data. 
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Figure 3.8. Measurements at different scales. A) Larger-scale features, like this 
linear sandbody element, can be easily measured in GIS software. B) 
Intermediate- to small-scale features can also be measured from the 
orthomosaics. Meso-scale sedimentary structures, like these planar-view sets of 
trough cross-strata, can be measured from the orthomosaic. These features were 
checked with ground-based observations. The UAV-SfM method provides the 
ability to acquire additional data from inaccessible portions of outcrops. 
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Figure 3.9. Volumetric and area calculations. A) The 3-D nature of the point cloud 
produced from the UAV-SfM method allows for areas and volumes of outcrops to 
be easily measured. Here a sandstone is used to demonstrate these capabilities. 
The red line delineates the measured area. The green represents areas inferred 
areas lacking keypoints. B) DSM of the same sandstone in (A). Additional 
measurements can be made from the DSM and 3-D point cloud including vertical 
distances. The inset shows the topographic profile across the sandstone, 
depicted by the red line. Vertical scale is in meters above sea-level, horizontal 
scale is in meters. Location of image is shown in Figure 4. 

 

 



www.manaraa.com

 

36 
 

CHAPTER 4 

 

PLANVIEW VARIABILITY OF FLUVIAL DEPOSITS IN THE SALT WASH MEMBER 

OF THE MORRISON FORMATION, EAST-CENTRAL UTAH1 

 

1Chesley, J. T., Leier, A.L., 2017. To be submitted to Sedimentary 
Geology, 1/24/2017. 
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4.1 Abstract:  

Modern fluvial systems are highly variable, often containing the entire 

spectrum of fluvial styles (e.g., braided to meandering). This variability is difficult 

to capture in ancient fluvial deposits due to limited 1- and 2-dimesional 

exposures, which provide only a snapshot of the depositional history at one 

location. As a result, researchers are forced to interpolate between exposures 

and develop regional scale models that often underestimate the complexity and 

variability seen in modern environments. Outcrops of the Upper Jurassic Salt 

Wash Member of the Morrison Formation in east-central Utah, USA provide an 

opportunity to examine ancient fluvial sandstone bodies in planview. Here, we 

characterize the planview architecture of the Salt Wash Member across a 10 km2 

area using unmanned aerial vehicles, structure-from-motion photogrammetry, 

and field-based observations to gain insight into the lateral and vertical variability 

in these preserved systems. Overall, sandstone bodies are oriented to the 

northeast-southwest, with northeasterly paleocurrents, and have widths between 

2.5 and 130 m (average 39 m). However, within this spectrum are four distinct 

types of fluvial deposits, each with its own characteristics. Very narrow 

sandstone bodies (4-6 m wide) occur in groups, are less than 2 m thick and 

heavily bioturbated. Narrow sandstone bodies (15 to 45 m wide) are straight to 

sinuous, contain evidence of lateral migration, and were deposited by east-

northeast flowing fluvial systems. Medium sandstone bodies (75 to 105 m wide) 

are straight, and were deposited by non-migrating, east-flowing fluvial systems. 

Sheet/other sandstone bodies consist of both sheet-like sandstones whose 
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edges are not visible and eroded sandstones bodies that cannot be 

reconstructed. Vertically, these deposits show a stratigraphic pattern that 

alternates between intervals dominated by narrow and medium sandstone 

bodies, indicating a cyclical deposition.  The succession is consistent with the 

distributive fluvial system model proposed for the Salt Wash Member. However, 

the range of sandstone bodies and orientations in this area suggest the DFS 

deposits may be more variable at local scales (e.g. 10km2) than what would be 

predicted by existing large-scale DFS models.   
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4.2 Introduction 

Fluvial strata serve as petroleum reservoirs, groundwater aquifers, and 

contain important information on continental paleogeographies (e.g., Miall, 1996; 

Bridge, 2006) However, these deposits can be difficult to predict due to their 

complicated arrangement in three-dimensional space. Almost all data from 

ancient fluvial strata are derived from vertical successions, which are exposed in 

either outcrops or from subsurface data such as well-logs (Miall, 1985; Ethridge, 

2010). Whereas these data are crucial and have yielded important descriptive 

and predictive stratigraphic models, the variability of ancient fluvial deposits in 

planview space has received far less attention, undoubtedly do to the rarity of 

such exposures. Seismic data and regional correlations provide information on 

the larger-scale planview characteristics of fluvial deposits (e.g., Weber, 1992; 

Hardage et al., 1994; Carter, 2003; Martinez et al., 2004), but details at the 

barform scale are often below the resolution of these methods. At the other end 

of the spectrum, planview outcrops of fluvial strata are typically localized and 

limited to a particular barform or stratigraphic horizon, and have traditionally been 

used to reconstruct paleohydraulic conditions (e.g., Gawthorpe et al., 1993; 

Bridge et al., 1995; Foix et al., 2012; Ielpi and Ghinassi, 2014; Hartley et al., 

2015). As a result, there are little data on planview architecture of ancient fluvial 

sandstone bodies over ~1-10 km2 scales. Questions remain as to whether the 

planview architecture of fluvial deposits at these scales are consistent with those 

of regional trends and whether sandstone variability at this scale is predictable. 
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Here we use unmanned aerial vehicles (UAVs), structure-from-motion 

photogrammetry (SfM), and field observations to describe and interpret planview 

exposures of fluvial sandstone bodies in the Salt Wash Member of the Morrison 

Formation in east-central Utah, USA. Mudstones in this region have been 

eroded, leaving a 3-D framework of flat-lying sandstone bodies that provide a 

rare opportunity to characterize planview aspects of the deposits. Based on our 

measurements, the Salt Wash Member contains a wide array of sandstone 

bodies, with differing widths, orientations, and shapes. Despite the variability, 

there are recognizable patterns and trends in the sandstone bodies. Sandstone 

bodies tend to fall into three width groupings, 4-6 m, 15-45 m, and 75-105 m. 

These groupings of sandstone body widths tend to have particular 

characteristics, including orientations and shapes. Stratigraphic horizons in the 

succession tend to be dominated by sandstone bodies with one particular fluvial 

style and width. Although collected over a limited area, these data suggest fluvial 

sandstone bodies in planview contain recognizable patterns, which can be used 

to better assess reservoir and aquifer models. The overall nature of the 

sandstone deposits are consistent with previously proposed distributive fluvial 

system models (DFS). However, existing DFS models focusing on regional 

trends fail to predict the variability observed over more local (~10 km2) scales.    

4.3. Background 

The Upper Jurassic Morrison Formation consists of fluvial sandstones and 

nonmarine mudstones, with localized lacustrine and eolian deposits that are 

exposed across a large portion of the western United Sates (Craig et al., 1955; 
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Mullens and Freeman, 1957; Tyler and Ethridge, 1983; Currie, 1997; Robinson 

and McCabe, 1997; Turner and Peterson, 2004; Kjemperud et al., 2008; 

Weissmann et al., 2013). Stratigraphy varies, but in most locations it is 

composed of three members: the lowermost Tidwell Member, the Salt Wash 

Member, and the uppermost Brushy Basin Member (Fig. 4.1A). Sediments of the 

Morrison Formation were derived from the nascent Sevier fold-thrust belt to the 

west and the Mogollon Highlands to southwest (Turner and Peterson, 2004). The 

Morrison Formation does not thicken continuously to the Sevier fold-thrust belt, 

as is typical of foreland basin deposits, which has led some to propose the area 

was influenced by mantle/dynamic processes (Heller et al., 1986). In contrast, 

others have proposed that the Morrison Formation was deposited in the back-

bulge depozone of a flexural foreland basin system, which resulted from a Late 

Jurassic phase of the Sevier orogeny (DeCelles and Currie, 1996; Currie, 1997).   

The Salt Wash Member of the Morrison Formation is roughly middle 

Kimmerdgian in age (Turner and Peterson, 2004) and extends across central 

Utah, west-central Colorado, northeast Arizona, and northwest New Mexico 

(Craig et al. 1955; Mullens and Freeman, 1957). The regional distribution of the 

deposits indicate the Salt Wash Member was associated with a fan-shaped 

fluvial system that prograded towards the northeast from a paleotopographical 

outlet located near the Mogollon-Sevier highlands syntaxis (Fig. 4.1B) (Craig et 

al., 1955; Mullens and Freeman, 1957; Peterson, 1980, 1984; Tyler and Ethridge, 

1983; Dickinson and Gehrels, 2008; Kjemperud et al., 2008; Weissmann et al., 

2013; Owen et al., 2015a). Climate during the time of deposition was likely semi-
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arid and characterized by variable or seasonal precipitation (Demko et al., 2004; 

Parrish et al., 2004; Turner and Peterson, 2004; Myers et al., 2014). 

Facies within the Salt Wash Member have been studied extensively and 

typically consist of very fine-grained sandstones to pebble conglomerates with 

trough and planar cross-stratification, plane beds, and assymetric ripples, which 

are interpreted as braided and meandering fluvial deposits (e.g. Peterson, 1980, 

1984; Tyler and Ethridge, 1983; Robinson and McCabe, 1997; Kjemperud et al., 

2008; Weissmann et al., 2013; Owen, et al., 2015b, 2015c). Pebbles of the Salt 

Wash Member are typically composed of sand intraclasts, quartz grains, and 

chert clasts (Robinson and McCabe, 1997; Owen et al., 2015c). Isolated to 

continuous, red-green, mottled mudstones are present in some areas and are 

interpreted as paleosols and floodplain deposits (Demko et al., 2004). Thin- to 

medium-bedded sandstone beds within mudstone packages are interpreted as 

crevasse splay, minor channel, and overbank deposits (Robinson and McCabe, 

1998; Kjemperud et al., 2008; Owen et al., 2015b, 2015c). Terrestrial bioturbation 

is present throughout the formation, particularly on the upper portions of fluvial 

sandstones and crevasse splay deposits (e.g., Hasiotis, 2004).   

Sandstone body geometries, grain size, and facies change across the 

region from the southwest to the northeast (Craig et al., 1955; Mullens and 

Freeman, 1957). In the southwest the unit is dominated by thick, laterally 

extensive amalgamated channel deposits with relatively coarse-grained 

sandstone and pebble conglomerate (Robinson and McCabe, 1997; Kjemperud 

et al., 2008; Owen et al., 2015c). Sandstone units thin to the northeast, and are 
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interstratified with progressively thicker successions of floodplain mudstones 

(Owen et al., 2015c). The farthest extent of the Salt Wash Member is dominanted 

by floodplain material with sparse ribbon channels (Owen et al., 2015c). These 

regional trends have lead to the conclusion that the Salt Wash Member, along 

with the underlying Tidwell Member, are part of an ancient DFS, referred to as 

the Salt Wash DFS (Craig et al., 1955; Tyler and Ethridge, 1983; Weissmann et 

al., 2013; Owen et al., 2015c).  

4.4. Study Area and Methods 

4.4.1. Overview 

The study area is located 22 km south-southeast of the town of Green 

River, Utah (Fig. 4.2A), where deposits of the Salt Wash Member are exposed 

along a west-east trending belt of outcrops that dip gently (<5 degrees) to the 

north (e.g., Jones and Gustason, 2006). Due to their less resistant nature, the 

interfluvial mudstones and siltstones have been eroded, leaving a 3-D framework 

of more resistant sandstone bodies in a planview exposure. In addition, local 

ledges and canyons provide abundant exposures of the vertical and lateral 

stratigraphic architecture (Fig. 4.2B). To capture these features, we combined 

field-based observations, a camera-mounted unmanned aerial vehicle (UAV), 

and structure-from-motion (SfM) photogrammetry.  

4.4.2 Field Mapping 

Ground-based field mapping and observations were made in the study 

area over the course of multiple weeks and included measured sections, 

photomosaics, and planview mapping of sandstone bodies and architectural 
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elements. Data collected include thicknesses of sandstone bodies, sedimentary 

facies characteristics, grain-size trends, depositional surfaces and sandstone 

architecture, and paleocurrent measurements. Field measurements were 

recorded using a hand-held. Paleocurrents were collected from individual 

stations on planview exposures, where at least 7-10 measurements were 

collected within a 10 m radius. The measurements were collected with a Brunton 

compass and made from trough-cross strata exposed as rib and furrow 

structures. Measured sections were recorded at multiple localities where vertical 

faces were exposed. Photomosaics of vertical exposures were collected, 

particularly along the southern margin of the study area. All interpretations made 

from orthomosaics and DSM data were checked in the field wherever possible.  

4.4.3 UAV and Image Acquisition 

Aerial images of the outcrop exposures were collected with a fully 

autonomous UAV (eBee, from Sensefly) that carries an 18.2 MP (Sony Cyber-

Shot WX) camera with a 25 mm focal length lens. The UAV is equipped with an 

Inertial Measurement Unit and an on-board GPS. Images were acquired and 

geotagged automatically by the UAV according to predefined specifications. 

Flight plans were created prior to going out in the field using eMotion2 software. 

The UAV flew at an altitude of 105 m (above local surface) and collected images 

with 80% lateral and longitudinal overlap, yielding a resolution of 3.4 cm/pixel. In 

order to ensure a consistent quality in all of the images the UAV was flown within 

the same time interval and similar weather conditions on each flight. A total of 17 

flights were flown to cover 12.89 km2. Flight times varied between flights, but 
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typically ranged from 30-40 mins. A total of 5,164 images were taken and used 

for processing. Resolution and accuracy of these data are discussed in Chapter 

3.  

4.4.4 SfM and Analysis 

 Images collected during the UAV flights were processed using SfM 

concepts with Pix4D software. SfM is a photogrammetric technique that utilizes 

the same principles as stereoscopic photogrammetry, namely that 3-D structure 

can be resolved from a series of overlapping, offset images (Fig. 4.3; See 

Chapter 3 for full details). Pix4D uses digital images to generate SfM-derived 

models including point-clouds (sparse and dense), 3-D meshes, orthomosaics, 

and digital surface models (DSM). The processing workflow consists of: 1) an 

initial processing stage, where key points are identified in the images, 

corresponding points are matched between images, and a sparse point cloud is 

generated; 2) a secondary stage, where a dense point cloud is generated and 

colored, and a 3-D mesh is constructed based on the densified point cloud; and 

3) a final stage, where the point cloud and images are used to generate a high-

resolution orthomosaic and DSM. Due to limited processing power and the sheer 

size of the dataset (5000+ images) the project was split into 11 subprojects 

containing a maximum of 500 images and processed separately. Processing time 

for each subproject averaged around 6.5 hours. All subprojects were 

georeferenced from the geotagged images using the WGS 1984 UTM Zone 12N 

coordinate system.  
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 Data were imported into ArcMap where each subproject was properly 

aligned using a zero-order polynomial shift. Geodatabases were created in 

ArcMap to store and plot the data collected from the field onto the DSM and 

orthomosaic images derived from the UAV and SfM photogrammetry. Individual 

measurements and observation stations were transferred into ArcMap using GPS 

coordinates collected during field work. The orthomosaic was used to digitally 

map the exhumed sandstone bodies, which were annotated with observations 

taken from the field (e.g. paleocurrents, facies etc.). Quantitative information, 

such as width and area, was extracted from the orthomosaic and DSM datasets. 

The point-cloud, mesh, and field based observations aided in determining relative 

stratigraphic relationships between cross-cutting and adjacent sandstones. 

4.5. Results and Discussion 

4.5.1. General Observations 

 Sandstone bodies of the Salt Wash Member in the study area include a 

wide variety of shapes, thicknesses, widths, and orientations. Many of the 

sandstone bodies in the area are relatively straight with uniform widths along 

their lengths; however, several sandstone bodies have highly curved outer 

margins and widths that vary significantly along the length of the exposure (Fig. 

4.4). Several smaller sandstone bodies (widths <8 m) are exposed in parallel 

trending linear groups. Width measurements (n=840) were extracted from 21 

distinct sandstone bodies, with 40 measurements made per sandstone body (Fig. 

4.4B). These measurements yielded an average width of 39 m, with values 

between 3 and 130 m. Measured widths are impacted by erosion of the 
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sandstone bodies, and therefore are probably minimum estimates of original 

dimensions. The average thickness of sandstone bodies is 4.5 m, but varies 

between 0.65 and 12 m. Width-to-thickness ratios of sandstone bodies in the 

study area average of 8.7 (n = 9). The average orientation of the exposed 

sandstone bodies is 39°; however, the orientations vary nearly 180° and 

individual sandstone body’s cross-cut one another at nearly all angles. 

Paleocurrent measurements (n=866) indicate a northeast-directed flow, with an 

average value of 74°, which is generally consistent with previous measurements 

from the Salt Wash Member in this area (e.g., Owen et al., 2015). Similar to 

sandstone body orientations, paleocurrents vary over a 180° degree range, from 

354° and 173°. Of the entire area, 29% contains visible sandstone bodies, which 

represents a minimum value considering those that are unobservable or those 

that have been eroded.  

 The focus of this study is the planview architecture of the Salt Wash 

Member, and not specific facies; however, here we provide a brief overview of 

the lithofacies observed in the field (Fig. 4.5). The Salt Wash Member in this area 

consists of single- and multistory, ribbon and multilateral fluvial sandstone 

packages separated by laterally continuous, red and green floodplain mudstones. 

Sandstones vary from very fine-grained to pebbly, with medium- to coarse-

grained sandstones being most common. Trough- and planar-cross strata are 

present in almost all sandstone successions, along with plane parallel 

(horizontal) laminations, and asymmetric ripple cross laminations. Uppermost 

portions of sandstone successions are commonly bioturbated. Granules, 
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pebbles, and mud rip ups are common in sandstones, particularly near erosive 

surfaces. Clast-supported pebble conglomerates occur as lenses within 

sandstones and continuous sheets. Mudstone successions are red and green, 

mottled, and contain calcium carbonate nodules, root traces and bioturbation. 

More extensive descriptions of the facies can be found in the following: Tyler and 

Ethridge (1983); Currie (1997); Kjemperud et al. (2008); Owen et al. (2015b; 

2015c). 

4.5.2. Sandstone Body Styles and Characteristics 

Average widths, thicknesses, orientations, and other measurements 

obscure several salient trends in the sandstone bodies. Field-based observations 

and measurements from orthomosaics indicate there are 4 distinct sandstone 

bodies that can be distinguished based on their widths and additional criteria 

(Figs. 4.4 and 4.6). In order to be consistent with absolute measuring schemes, 

we classify these sandstone bodies using Gibling (2006) values, and divide the 

sandstone bodies into three primary classes: Very narrow sandstone bodies 

(widths 3-6 m); Narrow sandstone bodies (widths 15-45 m); and Medium 

sandstone bodies (widths 75-105 m). In addition, we have a class for all other 

sandstone bodies in the area, termed Sheet/Other, which include sandstone 

bodies whose edges are obviously eroded or not exposed at the surface (Fig. 

4.6). 

4.5.2.1. Very Narrow Sandstone Bodies 

Very narrow sandstone bodies in the Salt Wash Member have widths of 

approximately 3-6 m (average = 5 m), are underlain and overlain by mudstone 
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paleosols, and constitute <1% of the total area. These sandstone bodies are 

generally exposed in groups with multiple linear bodies of similar dimension 

oriented parallel to sub-parallel with one another (Fig. 4.7). In cross-section, 

these units have symmetric lensoid shapes and are typically less than 2 m thick, 

yielding an average width to thickness (W/T) ratio of 6. Sandstones are very fine- 

to fine-grained and moderate to well-sorted. These units are commonly heavily 

bioturbated, including root traces and unidentified terrestrial burrows (Hasiotis, 

2004). Where present, sedimentary structures include trough-cross strata, 

horizontal lamination, and current ripples. In planview, the very narrow sandstone 

bodies are typically straight to slightly sinuous with relatively constant widths 

along their lengths. These are present throughout the study area but are best 

exposed adjacent to larger sandstone bodies, although not necessarily at the 

same stratigraphic horizon. While these features show a mean orientation to the 

northeast (avg. = 31°), they display the widest variation of all the sandstone 

bodies.  

The very narrow sandstone bodies are interpreted as deposits of small (<8 

m width) channels that occupied floodplain environments of the Salt Wash fluvial 

system. Extensive bioturbation within these units suggests that once deposited, 

the sediment was exposed to plant, insect, and animal activity. These are 

interpreted as crevasse channel and splay deposits, some of which may have 

been influenced by animal trackways (Jones and Gustason, 2006).  
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4.5.2.2 Narrow Sandstone Bodies 

Narrow sandstone bodies are present throughout the study area (Fig. 4.8), 

constituting 2% of the total area. Narrow sandstones range in width between 15-

45 m, with an average width of 26 m. Widths are typically consistent along the 

length of the sandstone bodies; however, widths can vary considerably along the 

length of particular examples, particularly where outer margins are arcuate and 

the body itself widens and narrows along its length. Thicknesses of sandstone 

bodies are variable, but generally between 2 and 4 m, yielding an average W/T of 

9. These sandstone bodies typically have both symmetric and asymmetric cross-

sections. Individually, the sandstone bodies represent single story deposits and 

are typically straight to slightly sinuous (sinuosity ~1.1) over their exposed 

lengths. The majority of the examples do not contain evidence of lateral 

migration, although there are several exceptions. In the southern portion of the 

study area, one example displays clear evidence of a laterally migrating barform 

and has a sinuosity value of 1.3 (see below; Fig. 4.13). Surface separating 

architectural elements within individual sandstone bodies are common and 

present in both planview and vertical exposures. Internally, these features are 

composed of medium- to coarse-grained sandstone with trough-cross strata, and 

lesser planar cross-strata, plane-parallel laminations and rare current ripple 

cross-laminations. Rare lenses of clast-supported granule- to pebble-

conglomerate occur within these sandstone bodies throughout the study area. 

The uppermost portion of individual sandstone bodies is commonly bioturbated. 

These features are preferentially oriented toward the north-northeast, avg= 28°, 
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with a range between 340° and 120°. Paleocurrents indicate flow directions to the 

north-northeast (average = 65°, n=313).  

The narrow sandstone bodies are interpreted to have been deposited by 

straight to sinuous fluvial channels that transported sand- to pebble-size 

sediment to the north-northeast. The majority of these sandstone bodies do not 

have evidence of lateral migration, suggesting straight to sinuous, fixed-

channels. However, several examples in the study area contain clear evidence of 

lateral migration and are consistent with meandering river facies models (e.g., 

Miall, 1996). 

4.5.2.3. Medium Sandstone Bodies 

Medium sandstone bodies represent 7% of the total area and have widths 

typically between 75-105 m and an average width of 85 m (Fig. 4.9E). Widths are 

consistent along the length of these sandstone bodies. Individual sandstone 

bodies have thicknesses between ~4-8 meters, yielding an average W/T ratio of 

11. These are both single and multistory, and typically straight (sinuosity ~1); 

individual stories tend to have symmetric cross-sectional forms. The medium 

sandstone bodies contain little to no evidence of lateral migration (Fig. 4.9A-D). 

Surfaces separating architectural elements within individual sandstone bodies 

are common and present in both planview and vertical exposures. Medium 

sandstone bodies are composed of fine- to coarse-grained sandstone with 

discontinuous lenses of clast-supported granule- and pebble-conglomerate. 

Trough cross-strata, planar cross-strata, plane parallel beds and laminations, and 

rare current ripple cross-laminations are present throughout the sandstone 
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bodies. Macroform features include sets of low-angle, inclined beds dipping in 

both the same direction and orthogonal to paleocurrent directions. Uppermost 

surfaces of individual sandstone bodies are commonly bioturbated. These 

sandstone bodies are oriented to the east and east-southeast (avg=87°, n=7). 

Paleocurrents (n=135) correspond to the overall orientation of the sandstone 

body and average 89°, with a range between 10° and 155°(Fig. 4.9F).   

The medium sandstone bodies are interpreted as deposits of larger 

(relative to the narrow and very narrow sandstone bodies), non-migrating 

channels that contained downstream and laterally accreting bars. While the 

calculated sinuosity signifies a system of straight channels there are several that 

display gentle curvature (Fig.4.6). These sandstone bodies are similar to others 

documented in the Salt Wash Member, which are attributed to relatively straight, 

fixed-channel fluvial systems(e.g., Owen et al., 2015c).  

4.5.2.4. Sheet/Other Sandstone Bodies 

Sheet/Other sandstone bodies are scattered across the study area and 

represent 19% of the total area. These sandstone bodies represent two primary 

types of exposures: 1) Sandstone bodies that are highly eroded, such that 

original dimensions cannot be determined; 2) “Sheet” sandstone bodies that are 

relatively wide (>100 m), and whose margins are not exposed, precluding 

measurements. Those sandstone bodies that are highly eroded are generally 

associated with the uppermost portion of the Salt Wash Member, and have been 

eroded to such an extent that no planview information can be gathered. The 

sheet sandstone bodies are 5-12 m thick and composed of medium- to coarse-
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grained sandstone with interbedded granules. Along the southern edge of the 

study area at least three of these successions are visible, each separated by 

packages of floodplain material (Fig.4.10).  Paleocurrents are toward the east 

with an average paleoflow direction of 73° (n = 283). Vertical exposures reveal 

multilateral channel belt packages. Internally, the sandstone bodies contain both 

lateral and downstream accreting surfaces.  

The sheet sandstones are interpreted as laterally continuous sandstone 

bodies deposited by braided river systems or through the lateral amalgamation of 

individual channel deposits in a relatively low accommodation/sediment supply 

system. Both braided river systems and amalgamated fluvial channels can 

produce wide, laterally continuous sandstone bodies (Miall, 1996; Owen et al., 

2015c). The similarity between the paleocurrent directions of the medium 

sandstone bodies and the sheet sandstone bodies supports the hypothesis that 

these sheet sandstones may represent amalgamated channel deposits, however 

the braided river hypothesis cannot be excluded. 

4.5.2.5 Discussion 

 Sandstone bodies of the Salt Wash Member exposed across the study 

area are highly variable, with a broad range of thicknesses, widths, shapes, and 

orientations. Whereas the average values from all of these deposits are 

consistent with general trends and previous studies (e.g., Tyler and Ethridge, 

1983; Currie, 1997; Robinson and McCabe, 1997; Kjemperud et al., 2008; Owen 

et al., 2015a, 2015b, 2015c), these average values hide recognizable patterns 

within the data set. Our data suggest at least 4 types of sandstone bodies are 
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present in the area, each with their own characteristics. Very narrow sandstone 

bodies are 4-6m wide, straight, and heavily bioturbated features that are typically 

present in groups. Narrow sandstone bodies are 15-45 m, straight to sinuous, 

and north-northeast oriented features. Medium sandstone bodies are 75-105 m 

wide, straight, and east-southeast oriented features. Sheet sandstone bodies are 

wide >100 m features with paleocurrents directed to the east.  

These findings have several implications for reconstructing ancient fluvial 

deposits and for predicting subsurface equivalents. Sandstone bodies in this 

portion of the Salt Wash Member record deposition by different fluvial systems, 

each with their own particular characteristics. Evidence of both laterally migrating 

and fixed-channel systems are present in the area, along with a relatively wide 

range in the size of the original fluvial channels. The medium sandstone bodies, 

for example, are not simply the product of amalgamated narrow sandstone 

bodies, but were deposited by relatively larger fluvial channels that were oriented 

>45° from the ancient rivers that deposited the narrow sandstone bodies. As a 

result, the distribution of sandstone body properties is not normally distributed 

about the average of the entire group. This is most evident in the width 

measurements, where there are three populations within the overall 

measurements. Distributions like these may be an important constraint for 

numerical models of flow in reservoirs and aquifers, which typically require a 

programed range and distribution of values.     
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4.5.3. Vertical trends in sandstone body characteristics 

4.5.3.1 Description 

The Salt Wash Member in this area contains a distinct vertical stacking 

pattern, which most evident when the succession is divided into several 

stratigraphic intervals. The lack of distinct through-going surfaces or beds within 

the study area preclude a definitive subdivision of the strata; however, field 

based mapping and high-resolution DSM data allow us to divide the succession 

into approximate intervals based on superposition and cross-cutting relationships 

(Fig. 4.11). Based on similarities in specific stratigraphic horizons, we break up 

the succession into 4 layers or intervals, which we assume approximate relative 

periods of deposition. Obviously, it is unlikely that all sandstone bodies within a 

single interval were deposited simultaneously, or that the channels responsible 

for their deposition were active at the same time. However, we assume the 

sandstone bodies in these intervals were deposited prior to sandstone bodies in 

overlying intervals.  

Interval 1, represents the lowermost interval of sandstone bodies visible in 

planview in the study area (Fig. 4.12A). In some locations this interval represents 

the lowermost sandstones of the Salt Wash Member exposed in planview, in 

other areas there are relatively thin (~1.5 m) laterally discontinuous sandstone 

bodies beneath this interval. Interval 1 overlies a prominent red paleosol that can 

be traced across much of the study area. The sandstone bodies in this interval 

are characterized by their narrow widths (26 m), and north-northeast trends (Fig. 

4.8). Several of the sandstone bodies are either sinuous and/or contain evidence 
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of lateral migration. These sandstone bodies are best exposed in the west-

southwest portion of the study area where multiple north-northeast oriented 

sandstone bodies are present (Fig. 4.6A).  

The overlying interval, interval 2, contains the first evidence of medium-

width sandstone bodies. Sandstone bodies in interval 2 are characterized by their 

greater relative widths (e.g., 85 m), southeast trends, and low-sinuosity (Fig. 

4.12B). The best example of these deposits are in the western portion of the 

study area, where a relatively wide, southeast-trending sandstone body cross-

cuts and lies above the more narrow sandstone bodies of Interval 1 (Fig. 4.11). 

Here, paleocurrent directions vary almost 180 degrees between the sandstone 

bodies in interval 1 and 2.   

Interval 3 is relatively poorly preserved throughout the study area, but 

where present are characterized by relatively narrow and somewhat sinuous 

sandstone bodies (Fig 4.12C). This interval is best exposed in the south-central 

portion of the study area (Fig 4.6A and Fig. 4.8A), where a narrow (44 m) ribbon 

sandstone body contains arcuate outer borders suggesting laterally migrating 

channels. 

The uppermost interval, interval 4, is not the uppermost portion of the Salt 

Wash Member, but represents the uppermost interval with sufficient preservation 

for planview characterization. Interval 4 is characterized by several medium width 

(85 m), east trending, low-sinuosity sandstone bodies (Fig. 4.12D). These are 

best preserved in the north-central portion of the study area where three, 

relatively straight sandstone bodies cross-cut one another (Fig. 4.6A). 
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4.5.3.2. Discussion 

 We use the vertical position of the sandstone bodies as a proxy for the 

relative timing of deposition in this area. Rivers with relatively narrow, sinuous, 

northeast-flowing channels occupied the area initially, and were later replaced by 

southeast-flowing channels that deposited relatively wider channel belts. North-

northeastern flowing river channels returned for a period, but were subsequently 

replaced by easterly flowing channels with similar characteristics to those found 

in interval 2. Throughout this entire cycle, crevasse splays occurred, recorded by 

very narrow sandstone bodies.  

 The vertical succession observed in our study area is consistent with 

recent DFS models. In prograding DFS, distal fine-grained deposits are overlain 

by coarser-grained medial and proximal sediments. The vertical trend is 

hypothesized to include a lowermost portion with mudstone-dominated facies 

and rare, isolated sandstone, an intermediate portion with mudstone and isolated 

to amalgamated fluvial sandstone bodies, and an uppermost portion with 

relatively coarse-grained, amalgamated fluvial sandstones with relatively little 

mudstone (e.g., Horton and Decelles, 2001; Nichols and Fisher, 2007; Hartley et 

al., 2010; Owen et al., 2015b, 2015c). The Morrison Formation in this area 

contains a lowermost portion dominated by clay- and siltstone paleosols with 

relatively thin (<3 m) sandstone bodies, some of which belong to the Tidwell 

Member. The Salt Wash Member strata exposed in our study area are smaller in 

the basal most layer (interval 1) and the largest sandstone bodies are in the 

upper most (preserved) intervals (interval 4). The change between narrow-width 
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sandstone bodies to medium-width sandstone bodies occurs through alternating 

intervals and not in sharp break, which may be more characteristic of DFS 

deposits in detail. The uppermost beds of the Salt Wash Member in our study 

area are also the coarsest-grained, with coarse-grained sandstone and beds of 

pebble-conglomerates. Where present these units are laterally continuous and 

intervals of mudstones are lacking; however due to their position in the 

succession these units are poorly preserved. We posit that these remains of the 

uppermost part of the Salt Wash Member represent the uppermost facies in the 

DFS model, which includes the amalgamated sandstone bodies.  

4.5.4. Barform feature  

4.5.4.1 Description 

The southwestern portion of the study area contains evidence of a laterally 

migrating barform (Fig. 4.13A). The northern margin of the sandstone body is 

convex to the north and the southern boundary is limited by a cliff face. Grain 

size is dominantly medium grained with no noticeable trends across the 

exposure. The radius of curvature ranged between 66 and 116 m with an 

average of 94 m. Paleocurrent data indicate average flow was to the east (87°; 

n=173), but varied considerably, with values between 345° and 173°. The width 

of the exposure varies as a result of the arcuate northern margin of the 

sandstone, with values of 56 m in the west, 115 m in the center, and 65 m in the 

east. The majority of the surfaces within the sandstone body are convex-

northward, similar in trend to the northern boundary, with the exception of one 

architectural element in the west-central area, which trends to the northwest-
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southeast (Fig. 4.13B). The northernmost portion of the sandstone is composed 

of a single-story, asymmetric sand-filled channel with poorly developed lateral 

accretion surfaces. A series of west-east and northwest-southeast trending 

curvilinear sandstone bodies and surfaces are present in the east-central area, 

which based on their orientation, outward dipping surfaces, and related 

paleocurrent data are lateral accretion sets (Fig. 4.13C). These surfaces are 

much better preserved and represented on the downstream side of the exposure 

(Fig. 4.13D).  

Mapping the accretion sets and determining the changes in sinuosity and 

radius of curvature allow us to infer channel pattern evolution (Fig. 4.14A-F). The 

southernmost bed has a sinuosity of 1.02, indicating a straight channel forming at 

the early stage of bend migration. Sinuosity shows a steady increase from 

successive accretion sets to the outer sandstone body with a sinuosity of 1.25. 

The radius of curvature for each accretion set shows a similar progression 

ranging from 66 to 116 m. Additionally, the apex of each of the bends shows a 

consistent shift to the northeast.     

Measured sections were collected along the southern cliff face to 

characterize the vertical facies and architecture of this sandstone body (Fig. 

4.15). The facies consist of trough and planar cross-stratification, granular 

sandstone, massive siltstone and sandstone, and red, green, and purple mottled 

mudstone. Sets of planar and cross-stratification commonly contain granular 

clasts at their base. Across much of the downstream length of the exposure 

(based on paleocurrent data), is a prominent erosional surface that extends 
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diagonally across the exposure. This surface is sharp and overlain by rip-up 

clasts of green mudstone. Overall, the vertical logs reveal a fairly uniform grain 

size sequence with slight fining upward intervals dominated by trough-cross-

stratification with interbedded granules.  

4.5.4.2. Paleohydraulic calculations 

The preservation of the channel width, meander amplitude, and 

wavelength can be used to compare to values predicted by commonly used 

paleohydraulic equations (Table 4.1, Fig. 4.16). Preserved channel width was 

measured using the orthomosaic from the northernmost periphery and ranged 

between 13 and 23 meters with an average of 17 m (“preserved” width); this 

preserved width was multiplied by 1.5 to obtain an approximation of “true” width 

at bankfull stage (Allen, 1965; Moody-Stuart, 1966). Allen’s (1965) equation and 

Moody-Stuart’s (1966) conversion factor for asymmetrical meandering channels 

resulted in a true channel width ranging from 19.5 to 34.5 m with an average of 

25 m. The preserved width and true width were used as inputs to calculate the 

meander wavelength and amplitude using equations from Leopold and Wolman, 

(1960). These were then compared to measurements extracted from the 

orthomosaic to see whether using a “preserved” or “true” width gave closer 

approximations.  

The meander wavelength from the orthomosaic is 323 m (Fig. 4.16). The 

meander wavelength calculated by the ‘preserved width’ is 147 to 261 m with an 

average of 191 m. The meander wavelength predicted by the ‘true width’ of the 

channel is 221 to 394 m with an average of 288 m. The meander amplitude from 
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the orthomosaic is 101 m. The meander amplitude predicted by the ‘preserved 

width’ is 51 to 96 m with an average of 68 m. The meander amplitude predicted 

by the ‘true width’ is 79.8 to 149.5 m with an average of 106 m. In both instances 

using Allen’s (1965) equation and Moody-Stuart’s (1966) conversion factor 

resulted in more accurate representations of meander wavelength and amplitude.  

4.5.4.3. Discussion 

Based on the overall morphology, sedimentary characteristics, and 

paleocurrent data, we interpret this sandstone body as the deposit of a laterally 

migrating point bar (meandering river) that also records minor downstream (east) 

translation. The orientation of the accretion sets in planview, as well as the 

vertical architecture, suggest the barform accreted both laterally (to the north) 

and downstream (to the east), relative to the dominant paleoflow direction. This is 

also evident from the planview exposure where the apex of the bend surfaces 

shift farther northeast indicating an expansional evolution, similar to 

characteristics of Wu and Bhattacharya (2015) (Fig. 4.14). In addition, the poor 

preservation of the upstream deposits (western side) has been shown to be a 

characteristic feature of downstream migration (e.g. Ielpi and Ghinassi, 2014).  

4.5.5. Salt Wash DFS and Modern Analog 

4.5.5.1. DFS Models 

The Salt Wash Member is arguably the best example of an ancient DFS, 

or fluvial megafan (Tyler and Ethridge, 1983; Weissmann et al., 2010; Owen et 

al., 2015c). Such features are increasingly recognized as important components 

of clastic depositional systems in basins (Hartley et al., 2010; Weissmann et al., 
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2010, 2013), but sedimentary details from these deposits are scarce. A modern 

DFS is defined by: 1) channels that radiate from an apex; 2) a decrease in 

channel size and abundance downstream; 3) an increase in preservation of 

floodplain deposits relative to channel deposits downstream; 4) a decrease in 

grain size downstream; and 5) a change from amalgamated channel deposits in 

proximal areas to smaller fixed channels in distal areas (Horton and Decelles, 

2001; Nichols and Fisher, 2007; Hartley et al., 2010; Weissmann et al., 2010).  

The apex of the Salt Wash DFS exited paleotopography in northern 

Arizona/southern Utah (e.g., Owen et al., 2015a), implying our study area in 

central Utah was located in the medial zone of the DFS system. Models predict 

deposits in the medial zone of a DFS should include interstratified paleosol 

mudstone or lacustrine deposits, and fluvial sandstones deposited by 

anastomosing, meandering, and braided systems (Singh et al., 1993; Horton and 

Decelles, 2001; Owen et al., 2015c). Overall, the strata in the Salt Wash Member 

are consistent with predictions for medial zone DFS deposits. Strata are 

characterized by single- to multiple-story fluvial sandstone bodies deposited by 

straight to slightly sinuous channels, consistent with numerous DFS models (e.g. 

Nichols and Fisher, 2007; Cuevas Martínez et al., 2010; Owen et al., 2015c). The 

sandstone bodies are separated by laterally traceable mudstone intervals, such 

that the overall sandstone-mudstone ratio is between approximately 40-70%, 

which is also consistent with existing models (Owen et al., 2015c).  

Salt Wash Member deposits in the study area contain characteristics that 

are not predicted by current, regional-scale models. All DFS models implicitly or 
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explicitly predict sandstone body orientations and paleocurrents in medial zones 

will be oriented roughly parallel to sub-parallel with the direction of the 

longitudinal length of the DFS (Singh et al., 1993; DeCelles and Cavazza, 1999; 

Horton and Decelles, 2001; Nichols and Fisher, 2007; Hartley et al., 2010; Owen 

et al., 2015c); in the case of the Salt Wash DFS, this direction is to the northeast 

(Tyler and Ethridge, 1983; Weissmann et al., 2013; Owen et al., 2015a, 2015c). 

Whereas the compiled paleocurrent data and sandstone body orientations are 

consistent with this prediction, in detail, the planview architecture is significantly 

more variable than predicted. The orientation of deposits associated with 

floodplain channels and crevasse splays (very narrow sandstone bodies) are 

expected to differ from the general trend, but variability is also present between 

narrow- and medium-width sandstone bodies, recording widely-oriented fluvial 

channels. Sandstone bodies with orthogonal or opposing paleocurrents and 

orientations are not part of current DFS models. At regional scales, the trends 

predicted by DFS models are likely accurate; however, our data suggests that at 

local scales (e.g., 10 km2) these predictions are oversimplified. This variability 

could have important implications for understanding fluid behavior in petroleum 

reservoirs and aquifers. 

4.5.5.2. Modern Analogue 

Modern DFS are located around the globe (Leier et al., 2005; Hartley et 

al., 2010; Weissmann et al., 2011) and help serve as modern analogues for 

ancient deposits. The Bermejo Fan or DFS in northern Argentina is a relatively 

well-studied DFS, and like the Salt Wash DFS, it exits an actively deforming 
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retro-arc fold-thrust belt (Central Andes) and is deposited in the adjacent foreland 

basin (Chaco Plain) (Fig. 4.17) (Horton and Decelles, 2001; McGlue et al., 2016). 

In addition, the climate of the Bermejo DFS and its watershed is generally warm, 

tropical to semi-arid, and with seasonal discharge (Iriondo, 1993; Horton and 

DeCelles, 1997; Latrubesse et al., 2012; Weissmann et al., 2015; McGlue et al., 

2016), which corresponds well to the reconstructed conditions of the Salt Wash 

DFS (Demko et al., 2004; Turner and Peterson, 2004; Myers et al., 2014).  

The Salt Wash DFS deposits in our study area share several similarities to 

the fluvial deposits of the modern Bermejo DFS. The size of the Bermejo River 

channel is greater than the sandstone body width in the Salt Wash Member, but 

similar to the Salt Wash Member the Bermejo DFS contains channel deposits 

that range across several scales. The medial zone of the Bermejo DFS includes 

the principal trunk channel (the Bermejo River), smaller, abandoned, sinuous 

channels, and even smaller channels adjacent to the trunk channel (Fig 4.17B-

D). The planview nature of the channels is highly variable, with evidence of 

meandering river systems, low-sinuosity non-migrating rivers, and portions of the 

trunk channel that are similar to braided stream channels. At the scale of our 

study area (~10 km2), the orientation of these individual channels is variable, with 

90° relationships common. The trunk channel of the Bermejo DFS contains ~km 

long stretches where it is straight and localized zones with point bars and 

meander bends. The straight portions of the channel are consistent, at least in 

appearance, with the low-sinuosity medium-width sandstone bodies in our study 

area. The presence of meander bends along the trunk channel suggest it is 
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possible the straight segments in our study area are only representing a portion 

of the ancient fluvial system and that these deposits may have characteristics 

more similar to meandering rivers in across a regional scale.    

4.6. Summary and Conclusions 

Planview exposures of the Upper Jurassic Salt Wash Member in east-

central Utah allow for a relatively unique examination of ancient fluvial deposits. 

With field based observations, UAVs, and SfM data, we were able to characterize 

these deposits across a ~10km2 area. Four dominant sandstone body types were 

documented based on size, orientation, and paleocurrent data. Very narrow 

sandstone bodies (4-6 m wide) are less than 2 m thick and heavily bioturbated. 

Narrow sandstone bodies (15 to 45 m wide) are straight to sinuous, contain 

evidence of lateral migration, and were deposited by north-northeast flowing 

fluvial systems. Medium sandstone bodies (75 to 130 m wide) are straight, and 

were deposited by non-migrating, east-flowing fluvial systems. Sheet/other 

sandstone bodies consist of both sheet-like sandstones whose edges are not 

visible and eroded sandstones bodies that cannot be reconstructed. These 

different sandstone body types reflect deposition by different types and sizes of 

fluvial channels. The average values of widths, sandstone body orientations, and 

paleocurrents do not adequately capture the variability in these parameters. 

Current DFS models, which are generally focused on regional-trends, also fail to 

predict the degree of variability at this scale. The sandstone bodies are highly 

variable with paleocurrents and orientations spanning > 180°. These differences 

suggest that large scale models may not be applicable to specific zones in DFS 
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deposits. While these models can act as a starting point to gain an understanding 

of regional trends, they fall short of being able to describe the true variability 

within these systems. 
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Figure 4.1. A) Stratigraphy of the Morrison Formation, modified from Owens et al. 
(2015c). B) Location map of the Salt Wash fluvial system. Salt Wash Member 
extent mapped out by Mullens and Freeman (1957). The apex position was 
defined by Owens et al. (2015a) (modified from Owens et al. (2015c)). 
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Figure 4.2. A) Imagery from Google Earth showing the study area, southeast of 
Green River, Utah. Exhumed sandstone bodies can be seen across much of the 
area. B) Vertical profile of the Salt Wash Member along the southern edge of the 
canyon.
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Figure 4.3 A) Structure-from-motion (SfM) photogrammetry concept.  Green 
spheres represent camera locations, green squares show the digital images.  
The outcrop of interest is in the background. Multiple overlapping images are 
taken and a matching algorithm identifies keypoints in each image (yellow dots) 
and corresponding keypoints are matched between images. The location of 
those keypoints are triangulated and projected into a 3-D space (black ray 
traces) generating tie-points (red dot), creating a sparse 3-D point-cloud. 
Following this, a densified point-cloud B) and mesh are generated from the 
sparse-point cloud. The densified point-cloud and the calibrated images are used 
to obtain elevation information and remove perspective distortion to generate the 
orthomosaic and DSM (C and D). 
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Figure 4.4. A) Overview of the study area with all mapped out fluvial sand bodies exposed in planview and 
paleocurrent directions. B) Average width distribution of the 21 sandstone bodies. C) Width/thickness (W/T) plots 
for the channel deposits in the Salt Wash Member exposed in planview. D and E) Rose diagrams for 
paleocurrents and sand body orientations. The dominant paleoflow direction is to the northeast, but ranges from 
north to southeast. The sandstone bodies are dominantly oriented to the northeast. 
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Figure 4.5. Illustrations of selected facies found from the Salt Wash 
Member in the study area. A) Medium to course grained planar cross-
bedding. B) Medium to granular trough-cross bedding often pebble lags 
separating beds. C) Pebble conglomerates. D) Fine-grained planar 
laminated sandstone. E) Current rippled sandstone. F) Clay-rich 
paleosols. G) Multistory sandstone bodies. H) Single story sandstone 
bodies.  
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Figure 4.6. A) Study area with sandstone bodies categorized by color. B) Bar graph depicting the percentage of the 
total area for each type of deposit. C) Raw width measurements plotted on a frequency distribution graph. Three 
distinct peaks can be seen at < 10 m, 15-30 m, and 75-90 m. D) Widths plotted with a modified scale on the x-axis to 
highlight the three distinct sandstone body sizes found.  
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Figure 4.7. Very narrow sandstone bodies. A) Planview exposure of the 
very narrow sand bodies from the orthomosaic. B) Photograph taken 
from the ground showing the typical style and geometry. C) The DSM 
emphasizes the dendritic arrangement of these sandstone bodies. D) 
The mesh showing a perspective view of the deposits. E) Width 
distribution graph. F) Rose diagram showing the orientations of these 
sandstone bodies. While the average is oriented to the northeast, these 
show the greatest distribution of all the other exposed sandstone bodies. 
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Figure 4.8. Narrow sandstone bodies. A) An example of one of these 
deposits with a northern orientation and flow direction from the 
orthomosaic. B) Photograph taken from the ground showing the typical 
style and geometry. The edges are highlighted by the white line. C) DSM 
of the exposures seen in A. D) Mesh showing a perspective view of the 
sandstone seen in A. E) Width distribution graph. Measurements range 
from 15 m to 65 m, with the largest concentration being between 20-30 
m. F) Rose diagrams depicting the paleocurrent directions and 
orientations. 
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Figure 4.9. Medium sandstone bodies. A) Two medium sandstone bodies 
oriented to the northeast and east with corresponding paleocurrent directions. 
The very narrow sandstone bodies sit slightly under these deposits and show a 
general orientation perpendicular to the medium sandstone bodies. B) 
Photograph taken from the ground showing the profile of one of these deposits. 
They characteristically differ from the very narrow and narrow in thickness, lateral 
extent, and channel stacking behavior. C) The DSM of the sandstone bodies 
from A. D) The mesh surface showing the eastern oriented sandstone body in A. 
The preserved edges are traced in white. E)  Width distribution graph. 
Measurements range from ≥65 m to 130 m, with the largest concentration being 
between 80-90 m. F) Rose diagrams depicting the paleocurrent directions and 
orientations. 
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Figure 4.10. Sheet/other sandstone bodies. A) Perspective view of a sheet sandstone exposed along the southern 
margin. B) Rose diagram showing the paleocurrent trends for these exposures. C) Profile view showing the sheet/other 
sandstone bodies exposed along the canyon in the southern edge of the study area. Three distinct belts can be seen 
separated by packages of floodplain material. These are similar to deposits described by Owens et al. (2015c). 
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Figure 4.11. Example of cross-cutting relationships and superposition. A) The 
top image is a perfect example demonstrating the cross-cutting relationships 
between adjacent sandstone bodies. The bottom image is an interpreted 
depiction of these relationships. The lowermost unit is a laterally accreting 
barform that is overlain by a north trending sandstone body. This unit is then 
cut, by a larger southeast oriented sandstone body. Finally this unit is overlain 
by a smaller sandstone body oriented towards the east. B) Perspective view 
from the textured mesh of the same sandstone bodies in A.  
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Figure 4.12. Schematic diagram showing the general evolution of vertical 
deposition. A) Interval 1 is characterized by narrow sandstone bodies and north-
northeast trends. This is the only interval with conclusive evidence of point-bar 
deposits. B) Interval 2 is dominated by medium sandstone bodies and show a 
southeast orientation. These sandstone bodies are straight in nature with only 
slight evidence of lateral migration. C) Interval 3 is similar in channel style to 
interval 1, but show a stronger orientation to the north. D) Interval 4 is similar in 
channel style to interval 2, but the preserved sandstone bodies are oriented 
east-northeast.  
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Figure 4.13. Barform feature (see Fig. 4.6 for location). A) Orthomosaic of the 
barform feature. B) Interpretation and data from the barform, derived from the 
UAV-SfM imagery and ground-based observations. Individual elements and the 
barform margins were mapped onto the orthomosaic. These interpretations were 
combined with paleocurrent and strike and dip data taken at multiple stations. 
Paleocurrent arrows represent the averages at each station. The geometry of the 
surfaces and ground-based data indicate the internal elements are accretion 
surfaces of a barform (point-bar) deposit. C) Photograph from the field showing 
an example of the accretion surfaces and the individual bars with paleocurrent 
indicators. D) Perspective view from the textured mesh showing the different 
sections of the barform. The upstream portion (red) does not display as 
prominent accretion surfaces as the downstream portion (green). A northwest-
southeast architectural element can be seen cutting across the barform and has 
been interpreted as a chute channel that was deposited after the point-bar was in 
place.  
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Figure 4.14. A-E) Schematic diagram showing the barform evolution 
based on the geometry of accretion sets and change in radius of 
curvature. The question mark represents areas of unknown due to 
erosion. The black arrow represents the direction of migration. A to C was 
dominated by laterally accretion to the north. D to E represent a change 
from a dominantly lateral to downstream migration. F) Southeast oriented 
sandstone body cuts across the accretion sets and may resemble a chute 
channel deposit. The dotted lines represent an inferred channel boundary.  
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Figure 4.15. A) Photomosaic of the vertical exposure of the barform feature with the locations of 
the vertical logs. B) Orthomosaic of the barform feature with the locations of the vertical logs. C) 
Five vertical logs taken along the southern exposure of the barform feature. A prominent erosional 
surface can be traced across logs 2 to 5 and inferred from log 1. D) Two photographs taken from 
logs 4 and 5. The white line represents the erosional surface traced across the logs. 
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Table 4.1. Paleohydraulic equations and calculations. 
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Figure 4.16. Paleohydraulic measurements taken from the orthomosaic.  
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Figure 4.17. A) Location map of the Bermejo DFS. B) Trunk channel located in 
the medial region of the Bermejo DFS. These channels most closely represent 
the medium sized sandstone bodies within our study. C) Abandoned channels 
that show a high degree of sinuosity and meander bends. These abandoned 
channels are most similar to the narrow sandstone bodies within our study. D) 
Floodplain channels coming off of the main trunk channel seen in B. These 
channels are most similar to the very narrow sandstone bodies within our study 
area.  
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CHAPTER 5

CONCLUSION 

The combined use of UAVs and SfM photogrammetry provides an 

effective way to acquire data from sedimentary outcrop exposures. This method 

is particularly useful for intermediate-scale features and helps bridge the gap 

between existing aerial imagery and ground-based observations. In addition, SfM 

records the 3-D nature of outcrops, making it perfect for capturing complicated 

exposures. The use of UAVs in image acquisition allows larger areas to be 

studied without losing detail, including exposures that are inaccessible by foot 

(e.g., vertical cliff faces). Although it should be tested prior to use, the 3-D 

reconstructions made from UAV-SfM can achieve a relative accuracy to a sub-

meter scale and can be used to gather quantitative data from outcrop exposures. 

That being said, this method is not without limitations. In terms of quality, TLS 

data yield far higher resolution and show more consistency relative to SfM 

(Wilkinson et al., 2016). The prices of UAVs are decreasing, but such devices are 

not without initial costs and many require operator training before use. In 

addition, UAVs cannot be used everywhere; UAVs are regulated by federal and 

local agencies, which should be consulted prior to their use. Despite these 

drawbacks, the combined use of UAVs and SfM photogrammetry represents a 

promising new tool for characterizing and studying sedimentary outcrops.  
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Integrating a light-weight UAV and SfM photogrammetry with field-based 

measurements and observations this study illustrates the variability that can exist 

within preserved fluvial systems. All current DFS models predict sandstone 

bodies and paleocurrents in proximal and medial zones should be oriented 

roughly parallel to sub-parallel with the direction of the radial length of the DFS 

(Singh et al., 1993; DeCelles and Cavazza, 1999; Horton and Decelles, 2001; 

Nichols and Fisher, 2007; Hartley et al., 2010; Owen et al., 2015c). In the case of 

the Salt Wash DFS, this direction is to the ~northeast (Tyler and Ethridge, 1983; 

Weissmann et al., 2013; Owen et al., 2015a, 2015c). Whereas the compiled 

paleocurrent data and sandstone body orientations are consistent with this 

prediction, in detail, the orientation of sandstone bodies and paleocurrents is 

much more varied than predicted. Within the study area defined in Chapter 4, 

these sandstone bodies are highly variable with paleocurrents and orientations 

spanning > 180°. These differences suggest that large-scale models may not be 

applicable to specific localities in DFS deposits. While these models can act as a 

starting point to gain an understanding of regional trends, they fall short of being 

able to describe the true variability within these systems. Thus, an important step 

forward will be to place an emphasis on studying fluvial deposits exposed in 

planview to better understand the variability that exists within larger scale 

depositional systems and their associated models. 
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APPENDIX A 

 UAV-SFM ACCURACY ASSESSMENT 

Images were collected using an autonomous, fixed-wing, UAV (eBee, from 

Sensefly) that carried an 18.2 MP digital camera (Sony) with a 25 mm focal 

length lens. The UAV is equipped with an on-board artificial intelligence system 

that analyzes data from an Inertial Measurement Unit and an on-board GPS to 

optimize the flight. The images were processed using Pix4Dmapper (Pix4D) 

photogrammetry-software. 

Data were collected from open fields in Columbia, South Carolina, USA 

(Fig. A.1A). We acquired images with an 80% lateral and longitudinal overlap and 

a flight altitude of 120 m (394 feet) above the local surface. In total, 78 images 

were taken covering roughly 0.18 km2, and requiring a flight time of 

approximately 10 minutes. GCPs (n = 9) were collected using a RTK differential 

GPS (Trimble R8) system to obtain absolute coordinates one and two 

centimeter-level accuracy in the horizontal and vertical, respectively and GCPs 

yielded a mean accuracy of 0.009 and 0.013 m in the horizontal and vertical, 

respectively. The images were geotagged with the UAVs onboard GPS unit with 

a mean horizontal accuracy of 1.96 m and a vertical accuracy of 2.61 m. Static 

features (n = 51) were measured on the ground using a tape measure to provide 

ground-truth data to compare with the SfM model.   
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To evaluate relative and absolute accuracy the dataset was processed in 

the SfM software twice: once with GCPs, the other without GCPs (non-GCP). 

The summary of both datasets can be seen in table A.1. The GCPs were used to 

scale and georeference one of the datasets, which yielded a RMS error of 0.053 

m. The total processing time took between 1 and 2 hours and resulted in a dense 

point-cloud, DSM, and orthomosaic (Fig. A.1B-C).  

 The absolute accuracy was assessed by comparing the amount of 

horizontal and vertical shift between the SfM outputs from the GCP and non-GCP 

datasets (Fig. A.2A-C). Based on the difference between the two datasets, there 

was an average shift of 1.24 m in the horizontal and 3.47 m in the vertical. The 

horizontal shift was determined by picking features between both datasets and 

then calculating the distance between those corresponding features. The degree 

of horizontal offset varied across the orthomosaic, with an average of 0.66 m in 

the western portion of the study area and 1.63 m in the eastern region (Fig. 

A.2A). The vertical shift was determined by subtracting both DSMs to calculate 

the change in elevation. The vertical offset saw a wide range from -18.34 m to 

29.71 m (Fig. A.2B). However, those extremes are focused in areas with vertical 

structures or bodies of water. The mean was found to be 3.47 m with a standard 

deviation of 2.09 m (Fig. A.2C).  

The internal accuracy was assessed by comparing corresponding 

measurements from the ground with both datasets (GCP and non-GCP). In order 

to assess the internal accuracy, static features (n = 51) measured on the ground 

were compared with measurements digitized on the produced orthomosaics in 
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order to determine if there is a statistically significant difference. The data was 

compared using a one-way analysis of variance (ANOVA) test, which 

demonstrated no statistically significant difference between the mean of the 

measured groups (F (2,150) = 0.000294, p = 0.999706, Table A.2). This 

indicates that measurements within the non-GCP dataset (with geotagged 

imagery) were statistically equal to those on the ground and in the GCP dataset, 

thereby demonstrating a high degree of internal accuracy in non-GCP dataset 

constructed from geotagged imagery. 
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Figure A.1. A) Study area near the University of South Carolina. The green 
triangles represent the distribution for ground control points (GCPs) and are 
appropriately placed on the other images (B-D) as a reference. B) A perspective 
view of the study area taken from the densified point-cloud. C) The DSM and 
orthomosaic (D) are the last to be generated during processing. 
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Figure A.2. Absolute accuracy of the UAV-SfM reconstructions by comparing the 
lateral and vertical location of the dataset with and without GCPs. The green 
triangles represent the locations of the ground control points. A) The degree of 
lateral shift was determined by manually picking identical features in both 
datasets and then computing the distance between corresponding points. Red 
indicates a large shift while green indicates only a small amount of shift. It is 
apparent from this figure that the degree of shift is not evenly distributed across 
the dataset. B) The two digital surface models (DSMs) where subtracted from 
each other using the map algebra tool in ArcMap (10.3) to determine the degree 
of vertical shift in absolute space. It’s worthwhile to note the extremes (-18.34 
and 29.71) are positioned in areas with vertical structures (e.g. trees) and bodies 
of water while the majority of the DSM shows a vertical shift of about 3.47 m. C) 
Histogram showing the distribution of vertical shift. The average difference is 
3.46 m with a standard deviation of 2.09 m. 
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Table A.1. Summary of the datasets used in the accuracy assessment and case 
study.  

 ACCURACY 
ASSESSMENT 

CASE 
STUDY 

 
GCPs No GCPs 

 

AREA (KM2) 0.1846 0.1846 0.8735 

ALTITUDE 120 120 92 

TIME FOR DATA CAPTURE (MINS) 8.2 8.2 32.37 

NUMBER OF IMAGES 78 78 516 

PROCESSING TIME (MINS) 
   

INITIAL PROCESSING 17.5 14.67 68.42 

POINT-CLOUD DESIFICATION 26.1 29.34 154.17 

DSM AND ORTHOMOSAIC GENERATION 23.15 55.65 119.47 

TOTAL 66.75 99.66 342.06 

MEDIAN KEYPOINTS PER IMAGE 46,220 46,220 63,362 

MEDIAN MATCHES PER IMAGE 19,634.8 18,231.4 15,037.7 

NUMBER OF 3-D DENSIFIED POINTS 10,839,90
6 

10,777,81
6 

71,977,263 

AVERAGE POINT DENSITY (PER M3) 79.1 79.43 117 

AVERAGE GROUND RESOLUTION 
(CM/PIXEL) 

3.36 3.35 2.68 
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Table A.2. Results from the one-way ANOVA test. 

 N Sum Mean Std. Dev. Min. Max. Variance 

GCP 51 409.7 8.0 15.7 1.5 85.2 245.2 

Non GCP 51 408.7 8.0 15.6 1.5 85.1 244.3 

Ground 51 412.6 8.1 15.6 1.5 84.8 243.4 

 

 Sum of Squares df Mean Square F P-value 

Between Groups 0.1438004 2 0.0719 0.000294 0.999706 

Within Groups 36641.0345 150 244.2736 
  

df = degree of freedom; F = variation between sample means; P-value = probability the 

data from all groups have identical means 

 

 

 


	University of South Carolina
	Scholar Commons
	2017

	Utilizing Structure-From-Motion Photogrammetry and Unmanned Aerial Vehicles to Characterize Variability in Fluvial Deposits from the Salt Wash Member of the Morrison Formation, East-Central Utah
	John Chesley
	Recommended Citation


	tmp.1509052145.pdf.DEaJk

